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Abstract

Disentangled and interpretable latent representations in generative models typi-
cally come at the cost of generation quality. The β-VAE framework introduces a
hyperparameter β to balance disentanglement and reconstruction quality, where
setting β > 1 introduces an information bottleneck that favors disentanglement
over sharp, accurate reconstructions. To address this trade-off, we propose a novel
generative modeling framework that leverages a range of β values to learn multiple
corresponding latent representations. First, we obtain a slew of representations
by training a single variational autoencoder (VAE), with a new loss function that
controls the information retained in each latent representation such that the higher
β value prioritize disentanglement over reconstruction fidelity. We then, introduce
a non-linear diffusion model that smoothly transitions latent representations corre-
sponding to different β values. This model denoises towards less disentangled and
more informative representations, ultimately leading to (almost) lossless represen-
tations, enabling sharp reconstructions. Furthermore, our model supports sample
generation without input images, functioning as a standalone generative model. We
evaluate our framework in terms of both disentanglement and generation quality.
Additionally, we observe smooth transitions in the latent spaces with respect to
changes in β, facilitating consistent manipulation of generated outputs.

1 Introduction

Today, numerous advanced latent generative models are capable of producing hyperrealistic images,
providing end users with a broad array of options. Current advancements in state-of-the-art generative
models focus primarily on qualitative improvements in generated outputs, with recent research
emphasizing the study and analysis of training dynamics to enhance generation quality (Karras et al.,
2022, 2024; Hoogeboom et al., 2023, 2024). Consequently, progress in generative modeling has
largely shifted focus from learning and evaluating a model’s latent representations to refining the
generation process itself. However, research on deep latent generative models (Kingma et al., 2013;
Radford et al., 2015) and unsupervised representation learning has shown that purposefully learned
representations not only enhance generative performance but also offer practical advantages such as
attribute and object changes (Wu et al., 2023).
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Previous generative modeling approaches aimed at learning disentangled and interpretable latent
representations have often trailed behind in generation quality. β-VAE is a fundamental method
for learning such representations, based on the variational autoencoder (VAE) framework (Kingma
et al., 2013). Higgins et al. (2016) modified the VAE objective by introducing a hyperparameter β,
where setting β = 1 recovers the original objective function. This β parameter governs the degree of
disentanglement, balancing it against reconstruction and generation quality. A larger β value imposes
stronger regularization on the latent space, empirically shown to promote disentanglement, while
a smaller β prioritizes reconstruction accuracy but does not encourage disentanglement. Although
β-VAE has been extensively studied (H. Kim et al., 2018; Chen et al., 2018; Shao et al., 2020;
Dewangan et al., 2022), overcoming this challenging trade-off in general models remains difficult
and has only been addressed by a few works (Ren et al., 2022; Yang et al., 2023; Wang et al., 2023a).

Inspired by β-VAEs, we aim to promote disentangled representation learning within modern genera-
tive models. To this end, we propose a novel generative modeling framework. Our model consists
of two main components, trained in a two-stage manner. First, we train a single VAE that learns
a spectrum of latent representations by varying the parameter β, which controls disentanglement
through regularization. This VAE comprises an encoder and a decoder, each conditioned on β.
However, this VAE still faces the trade-off issue: disentangled latent representations with larger β
lose information about the original input, leading to blurred reconstructions similar to those of a
standard β-VAE. To address this, we introduce a novel non-linear diffusion model that denoises the
latent variable at a given β back to an (ideally) non-lossy latent space corresponding to β = 0. This
allows us to generate sharp, non-blurred images by decoding the denoised latent variable (see Fig. 1).

In our experiments, we evaluate our model in terms of both disentanglement and generation quality.
For disentanglement, we demonstrate that our model effectively achieves this purpose while main-
taining generation performance, by following a well-established benchmark using CelebA (Yang
et al., 2023). Additionally, we benchmark our approach on well-known toy datasets (Locatello et al.,
2019; Khrulkov et al., 2021). Furthermore, we test our model’s capability as a standalone generative
model on widely-used image datasets both qualitatively and quantitatively. We also show that the set
of learned latent spaces is smooth with respect to β, which is essential for consistent manipulation.

Our contributions are briefly listed as follows.

• We propose a generative modeling framework that leverages multiple levels of latent representa-
tions, ranging from fully-informed to fully-disentangled, by extending β-VAE with a range of β
values, along with a novel model design and objective function.

• We propose a novel non-linear diffusion model that connects latent spaces corresponding to
different β values. By combining the VAE and the diffusion model, our approach enables both
disentanglement and high-quality generation in principle.

• We empirically demonstrate that our model effectively balances disentanglement and image qual-
ity, achieving a superior trade-off compared to existing methods with the same motivation. Our
approach attains disentanglement performance on par with disentanglement-focused baselines
while generating high-quality images comparable to state-of-the-art generative models.

2 Overview of β-VAE

We begin with the formulation of a vanilla VAE (Kingma et al., 2013). Suppose we have a dataset
D = {xi}Mi=1, where xi ∈ RD for i = {1, . . . ,M}.We denote the empirical distribution defined by
D as pD(x). A VAE aims to uncover a reduced set of latent factors that give rise to this dataset.

Specifically, a latent variable z ∈ Rd (d < D) is introduced, with its prior distribution set as
p(z) = N (0, Id). Data samples are generated by first sampling z ∼ p(z) and then decoding it
using a probabilistic decoder, denoted as pθ(x|z). The decoder is commonly parameterized by a
conditional isotropic Gaussian as pθ(x|z) = N (x|gθ(z), s2ID) with a non-negative scalar s2 and a
function gθ : Rd → RD. We then wish to maximize the marginal log-likelihood EpD(x)

[
log pθ(x)

]
,

where pθ(x) = Ep(z)[pθ(x|z)]. However, this maximization is not tractable. Therefore, in the VAE
framework, a surrogate objective function called the evidence lower bound (ELBO) is maximized
instead, formulated as

log pθ(x) ≥ Eqϕ(z|x)
[
log pθ(x|z)

]
−DKL(qϕ(z|x)||p(z)), (1)
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Figure 1: Our framework for achieving both disentanglement and generation. Our approach
embeds β values as time conditioning in our newly designed nonlinear diffusion model enabling
both effective disentanglement and high-quality generation. (a-b) Directly decoding zb at non-zero b
results in blurred images; however, applying the denoiser before decoding yields clear images. (c-d)
The denoiser also improves the quality of manipulated images. By using the same direction in the
latent space for these manipulations, we achieve consistent changes in age across different ground
truth images. This demonstrates that our model produces a disentangled and easily controllable latent
space. More examples of attribute changes can be found in Appendix D.5.

where qϕ(z|x) is a variational distribution used to approximate the posterior distribution pθ(z|x),
a.k.a., the encoder. A common way to model this distribution is using a conditional Gaussian as
qϕ(z|x) = N (z|fϕ(x),diag(σϕ(x))), with functions fϕ : RD → Rd and σϕ : RD → Rd≥0.

Through the maximization of Eq. (1), the encoder learns to recover latent generative factors from
the dataset, while the decoder attempts to reconstruct x from z as accurately as possible. In other
words, the encoder and decoder are trained to compress the data without information loss, effectively
becoming stochastic inverses of each other. The β-VAE (Higgins et al., 2016) is a variant of the
above model that employs the following modified objective function: Eqϕ(z|x)

[
log pθ(x|z)

]
−

βDKL(qϕ(z|x)||p(z)), where the regularization term in Eq. (1) is scaled by a hyperparameter β.

The choice of β creates a trade-off between the reconstruction quality and disentanglement of
the latent representation. Previous works have established that increasing the contribution of the
regularization term, i.e., setting β > 1, not only promotes independence among latent dimensions
but also facilitates the learning of interpretable generative factors (please refer to Appendix A for
this literature review). On the other hand, a downside to increasing regularization is the loss of
information. When the variational approximation approaches the prior according to the KL term, all
encodings qϕ(z|x) begin to collapse to the prior, resulting in a lack of distinct information about
individual data points, which hampers accurate reconstruction. This indicates that setting the value
of β is non-trivial due to the precarious balance between desirable disentanglement and undesirable
loss of information. Even with a suitable parameter β for disentangled representation, reconstructed
samples may still be blurred due to the loss of information.

In the following sections, we propose our solutions to two critical issues:

1. Problem 1: Choosing the optimal regularization coefficient (β) is nontrivial and requires
multiple training runs. Our solution to this issue is detailed in Section 3.

2. Problem 2: Achieving both generation quality and controllability is challenging, as the regular-
ization used for learning disentangled representations often degrades reconstruction and sample
quality. Our solution to this issue is detailed in Section 4
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3 Multi-β Representation Learning

To overcome the severe trade-off between reconstruction accuracy and the disentanglement of latent
representation in existing VAE variants, we propose multi-β latent representation learning. First,
we extend β-VAE by treating β as a variable rather than a hyperparameter in Section 3.1. Using a
monotonic property of multi-β latent space presented in Section 3.2, a subsequently learned diffusion
model allows us to move across latent spaces corresponding to different β (see Section 4).

3.1 Conditional Multi-level β-VAE

Here we extend the β-VAE to incorporate β as a variable within a range of values. In our setup,
unlike the typical β-VAE, β lies in [0, B] instead of being fixed, and it scales the reconstruction
and regularization terms with weights of (B − β) and β, respectively (see Eq. (4)). This approach
allows us to achieve a full spectrum of the weighting, encompassing both the reconstruction-only and
regularization-only objectives as extreme cases with β = 0 and B, respectively. We expect that larger
values of β result in more disentangled latent representations, while smaller values will yield higher
fidelity in the reconstructed samples. We assume that each value of β has its latent space, which is
denoted as Zβ . In our VAE, the decoder and encoder for a given β are designed as follows:

pθ(x|zβ ;β) = N (x|gθ(zβ , β), s2βI) (2)

qϕ(zβ |x;β) = N (zβ |fϕ(x, β), σ2
βI), (3)

where s2β ∈ R≥0, σ2
β ∈ R≥0, θ and ϕ represent the parameters for the decoder and encoder,

respectively. Both the encoder and the decoder depend on β, which induces different latent spaces.
Additionally, the conditional covariance matrices in both the data and latent spaces are modeled as
learnable isotropic matrices that depend solely on β.

Under this model setup, we propose a novel objective function based on a rescaled ELBO as
L = EβLβ , where

Lβ = EpD(x)

[
(B − β)Eqϕ(zβ |x)

[
log pθ(x|zβ)

]
− βDKL(qϕ(zβ |x)||p(z))

]
, (4)

and we sample β from a prior distribution to train the VAE across multiple β values. Notably, Lβ
when B = 1, with β = 0 and 0.5, corresponds to the objective functions for a plain autoencoder
and a VAE, respectively, without considering the scaling factors2. Algorithm 1 contains the training
algorithm for this augmented β-VAE.

3.2 Controlling Information Loss with β

As outlined in the previous section, our objective function (4) facilitates a smooth interpolation and
extrapolation between the objectives of an autoencoder and a VAE. Specifically, the parameter β
modulates the degree of information retention in the latent spaces. To elucidate this mechanism,
we present a simplified analysis of our novel objective function (4) in the case of B = 1. We
anticipate that setting β > 0.5 encourages disentanglement within the latent space Zβ , albeit at the
cost of information essential for accurate reconstruction. Conversely, choosing β < 0.5 enhances
reconstruction fidelity but compromises the disentanglement of representations.

A smaller β value places greater emphasis on the reconstruction term, resulting in a reduced latent
variance σ2

β . In the extreme case, setting β = 0 theoretically results in perfect reconstruction with
σ2
0 = 0, as demonstrated in the following proposition. We defer the proofs to Appendix B.

Proposition 3.1. Under certain regularity conditions, the global optimum of L0 is achieved when
σ2
0 = 0.

In contrast, increasing β towards 1 enhances regularization, which encourages disentanglement of the
latent representation. In the extreme case, when β = 1, the objective function (4) reduces to the KL
regularization term, causing qϕ(z|x;β = 1) collapse to the prior distribution p(z). Consequently,
the latent space, i.e., Z1, no longer retains any information about the input x, as demonstrated in the
following proposition.

2Our β is different from that of the typical β-VAE in the relationship between β values and their respective
models.
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Proposition 3.2. The mutual information between the input and the reconstructed samples produced
by the VAE becomes zero as DKL(qϕ(z|x;β = 1) ∥ p(z)) converges to zero. It holds for any decoder
function gθ(·, β = 1).

The gradual loss of information in the latent space with β is also characterised by a gradual increase
in the variance of latent representations such that σβ < σβ′ for 0 ≤ β < β′ ≤ 1, which is also
observed in previous studies (Takida et al., 2022).

In summary, our multi-level β-VAE is equipped to learn a slew of latent representations which due
to Eq. (4), capture major axes of variation present across the dataset by down-weighting accurate
reconstructions. This does not mitigate Problem 2. To this end, we purposely combine the model
Eq. (3) and Eq. (4) so that learnt σβ parallel a typical noising process in diffusion models (β ≡ t).
When trained well, diffusion models can capture the target distribution and sample realisitic data by
repeated denoising. However, due to the involvement of an encoder that specifies the mean fϕ(x, β)
at all β ∈ [0, 1] in the latent space, our noising process diverges from the commonly used linear
inference/noising process. We detail our formulation of non-linear denoising diffusion in the next
section.

4 Reversing the Information Loss

Increasing regularization enhances representation learning but negatively affects sample and recon-
struction quality. At higher β values, the reconstructions tend to collapse into an “averaged” image,
a phenomenon also noted by Collins et al. (2022). To address Problem 2, we propose reversing
information loss by training a denoising model based on a diffusion process. First, we review the
standard diffusion model in Section 4.1 and its nonlinear extension in Section 4.2. In this approach,
the time-varying mean is governed by the encoder (fϕ), with noise conditioning parameterized by β
or equivalently by time t.

4.1 Primer on Diffusion Models

We start with a brief primer on the vanilla diffusion models with a linear diffusion process. Diffusion
models consist of a fixed hierarchical encoding process, known as the forward or noising process,
and a decoding process for generation. In the encoding stage, incremental noise is gradually added to
the data, transforming it into a Gaussian noise:

q(zt|x; t) := N (zt|x, σ2
t Id), (5)

where t ∈ [0, T ], τ > 0 is a small constant, and σt > 0 is a predefined noise schedule that increases
with t. Next, the Markovian forward distributions are derived as

q(zt|zt−τ ) = N (zt|zt−τ , σ2
t|t−τId), (6)

where σ2
t|t−τ = σ2

t − σ2
t−τ . A tractable reverse decoding process is obtained via Bayes’ rule as

q(zt−τ |zt,x) = N (zt−τ |µ̃t(zt,x), σ̃2
t Id), (7)

where σ̃2
t =

σ2
t|t−τσ

2
t−τ

σ2
t

and µ̃t(zt,x) =
σ2
t−τ
σ2
t

zt +
σ2
t|t−τ

σ2
t

x. (8)

Diffusion models are trained to match the generative reverse conditional distributions in Eq. (7), and
are generally parameterized as

pψ(zt−τ |zt) := N (zt−τ |µψ(zt, t), σ2
r(t)Id), (9)

where µψ(zt, t) :=
σ2
t−τ
σ2
t

zt +
σ2
t|t−τ

σ2
t

x̂ψ(zt, t). (10)

x̂ψ is known as the denoiser. Equivalently, we parametrize it as a noise prediction model ϵ̂ψ , where
x̂ψ(zt, t) = zt − σtϵ̂ψ(zt, t). The loss function of a diffusion model is derived using an ELBO (by
extending Eq. (1) with time hierarchy), aiming to match the conditional distributions in Eq. (7) and
Eq. (9) over all t ∈ [0, T ] using the KL divergence. This loss boils down to a simple regression loss:

min
ψ

Et,xEzt|x

[
1

2σ̃2
t

∥µψ(zt, t)− µ̃t(zt,x)∥22
]
. (11)

5



By discretizing the time such that t ∈ {iT/N}Ni=0 for the iterative decoding, we obtain a hierarchical
generator:

pψ(x) =

∫
z

p(x|z0)p(zB)
N∏
i=1

pψ

(
z (i−1)T

N

∣∣∣z iT
N

)
, (12)

where p(zT ) = N (zT |0, Id).

4.2 Non-linear Diffusion in Latent Space

We propose a non-linear (in x) denoising diffusion for use in our model. In this subsection, time
variables t (and T ) are interchangeable with β (and B), as they represent the same concept. We
hinted in Section 3.2 that our non-linear diffusion process is prescribed by the β- or time-dependent
encoder. Formally, the distribution of zt for given x is

qϕ(zt|x; t) = N (zt|fϕ(x, t), σ2
t Id). (13)

This expression is just an adaptation of Eq. (3) with β = t, and is more general than Eq. (5). We
propose the nonlinear Markovian encoding process as

qϕ(zt|zt−τ ,x) = N (zt|zt−τ + fϕ(x, t)− fϕ(x, t− τ), σ2
t|t−τ ). (14)

This form closely resembles Eq. (6). Following the development in Section 4.1, we now define the
reverse of Eq. (14) as:

qϕ(zt−τ |zt,x) = N (zt−τ |µ̃t(zt,x), σ̃2
t Id), (15)

where µ̃t(zt,x) =
σ2
t−τ
σ2
t

zt +
σ2
t|t−τ

σ2
t

x+ fϕ(x, t− τ)− fϕ(x, t), (16)

with σ̃2
t remaining the same as Eq. (8). Due to the additional fϕ terms in this flavour of the diffusion

model, µψ cannot follow the same parameterization as in Eq. (10). Instead we introduce a new
approach to express the mean prediction in this case, as follows:

µψ(zt, t) :=
σ2
t−τ
σ2
t

zt +
σ2
t|t−τ

σ2
t

x̂ψ(zt, t) + ∆̂ψ(zt, t). (17)

Eq. (17) introduces an extra predictor ∆̂ψ for learning the evolution of encodings with time. In
practice, we train noise prediction, reparameterizing x̂ψ(zt, t) with ϵ̂ψ(zt, t), along with an encoding
difference predictor ∆̂ψ(zt, t), which is novel to the best of our knowledge.

Following the parameterization of µψ , our model training differs from standard practice in a couple
of key ways. First, we do not train the noise prediction network to predict the noise added to
z0 = fϕ(x, 0) given a sample zt. The transition from z0 to zt is non-linear due to the encoder and
depends on its Jacobian, dfϕ(x,t)

dt . Rather than learning an inversion of this time-varying encoding,
we aim to learn the direction of the noise (ϵt) at each time step t ∈ [0, T ] using ϵ̂ψ(zt, t), i.e.,

Et,xEϵtEzt|x,ϵt

[
1

w(t)
∥ϵ̂ψ(zt, t)− ϵt∥22

]
with zt = fϕ(x, t) + σtϵt and ϵt ∼ N (0, Id), (18)

where w(t) is a weighting function. This approach trains the model to denoise at each time step.
Additionally, ∆̂ψ is necessary for sampling and is trained to predict the change in fϕ over a small
time interval τ 3. Assuming that the encoder is a smooth function, this design is based on the intuition
that learning encoding differences over one time step is easier than over arbitrarily large steps.

We adjust the diffusion model’s U-Net to produce two outputs, ϵ̂(zt, t), ∆̂ψ(zt, t). Using these pre-
dictions, we build our DDPM (Ho et al., 2020)-inspired sampling algorithm, as shown in Algorithm 2.
The actual loss function used to train this new diffusion model is defined as

Et,xEϵtEzt|x,ϵt

[ 1

w(t)
∥ϵ̂ψ(zt, t)− ϵt(x, ϵt)∥22 + ∥fϕ(x, t− τ)− fϕ(x, t)− ∆̂ψ(zt, t)∥22

]
. (19)

3In implementation, we set τ = T/N in the discrete time setup, learning the single time-step encoding
difference for all times.
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Algorithm 1: Training of our VAE
Input: Dataset D, β-schedule {βi}Ni=1,

learning rate η, number of training steps
S

Output: Trained networks, ϕ, θ, and
σ = {σβ}β∈{βi}Ni=1

for s = 1, 2, . . . , S do
1 Sample: x ∼ pD(x), β ∼

U([0, 1]), ϵ ∼ N (0, Id)

2 Generate noisy encoding:
zβ = fϕ(x, β) + σβϵ

3 Compute the objective L based on
Eq. (4)

4 Update parameters: ω ← ω − η∇ωL,
where ω = {θ, ϕ,σ}

return fϕ, gθ, σ

Algorithm 2: Sampling of our diffusion
Input: Trained model ϵψ , total time steps N ,

largest time T , trained noise schedule
σ = {σt}t∈{0,T/N,...,(N−1)T/N,T}

Output: Generated sample z0

Initialize: zT ∼ N (0, Id)

for t = T, (N − 1)T/N . . . , T/N do
1. Predict noise and diff:

ϵ̂ = ϵ̂ψ(zt, t), ∆̂ = ∆̂ψ(zt, t)

2. Compute mean for zt:
µt = zt − σtϵ̂

3. Predict previous mean:
µt−T/N = µt − ∆̂

4. Update zt−T/N (with
ε ∼ N (0, Id)):zt−T/N =
µt−T/N + σt−T/Nε

return z0

Integrating the conditional multilevel β-VAE, as introduced in Section 3.1, with the diffusion model
described in Section 4.2 is key to mitigating the disentanglement-reconstruction trade-off in our
framework.

We now combine the two proposed modules from Section 3 and Section 4 into a single model, trained
in two phases. In the first phase, we train the conditional multilevel β-VAE using the loss defined in
Eq. (4) (Algorithm 1). After this, we train the non-linear diffusion model from Section 4.2, keeping
the autoencoder parameters fixed. Additionally, depending on the dataset, we fine-tune the decoder
with an adversarial loss, following Rombach et al. (2021), to enhance generation quality. Further
training details are provided in Appendix C.

5 Related Works

β-VAE and its variants have been extensively studied for their distinct capabilities (Burgess et al.,
2017) and wide-ranging applications in domains such as images (Higgins et al., 2016), text (Shao
et al., 2020), and molecular generation (Richards et al., 2022). These models are especially valued
for their interpretable latent representations, achieved through β-controlled regularization.

H. Kim et al. (2018) improved disentanglement while maintaining reconstruction quality by combin-
ing the ELBO with a total correlation term. Similarly, Chen et al. (2018) enhanced mutual information
between latent variables and observed data to promote independence among latent factors. Shao
et al. (2020) introduced an adaptive feedback mechanism that adjusts β during training based on KL
divergence. Dewangan et al. (2022) applied a deep convolutional β-VAE for feature extraction in
industrial fault diagnosis, using a variable β training protocol without conditioning the encoder and
decoder on β.

Both Collins et al. (2022) and Bae et al. (2023) investigated training VAEs with multiple β values,
with Bae et al. (2023) capturing the full rate-distortion curve using a hypernetwork conditioned on β,
and Collins et al. (2022) focusing on particle physics applications. In contrast, our framework enables
high-fidelity generation from disentangled representations (with larger β) by linking latent spaces
through a novel non-linear diffusion process, along with specific adjustments to the β-conditioned
VAE to optimize the latent space for diffusion.

Recently, a few methods have emerged to achieve disentanglement while preserving generation
fidelity. Wang et al. (2023b) developed InfoDiffusion, a pioneering diffusion-based model that
extends the Diffusion Autoencoder (DiffAE, Preechakul et al., 2022). Yang et al. (2023) introduced
DisDiff, which adds encoder and decoder components to pre-trained diffusion models to maintain
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generation quality, rather than training disentanglement-focused models from scratch. Ren et al.
(2022) focus on building an exploration technique for pre-trained generative models for post-hoc
identification of disentangled directions. Notably, in contrast to training-free methods our approach
encourages disentanglement during training, assuring a more disentangled representation.

Our method falls within the model-training-based category, similar to InfoDiffusion, but it uniquely
learns a spectrum of latent representations that provide a distinct advantage. Combined with
the learned non-linear diffusion model, our framework enables transitions between highly dis-
entangled and fully informed latent representations, facilitating the generation of high-fidelity out-
puts.Additionally, we show in Appendix D.1 (see Table 7) that finding-based methods like DisCo
(Ren et al., 2022) can complement our approach, indicating potential for combined implementations.

6 Experiments

We quantitatively demonstrate that our method achieves both disentanglement and high-quality
generation within a single model. We will focus on each of these aspects individually. Specifically, in
Section 6.1, we examine the disentanglement of the learned latent representations. In Section 6.2, we
evaluate our model’s unconditional generation performance and report standard metrics on commonly
used image datasets. Additional details regarding the experiments can be found in the appendix.

6.1 Evaluating Disentanglement

6.1.1 Image Dataset
Table 1: TAD and FID scores on CelebA. Our
model outperforms baselines in terms both of
disentanglement and generation quality.

Method TAD (↑) FID (↓)
β-VAE 0.088± 0.043 99.8± 2.4
InfoVAE 0.000± 0.000 77.8± 1.6
DiffAE 0.155± 0.010 22.7± 2.1
InfoDiffusion 0.299± 0.006 23.6± 1.3
DisDiff 0.305± 0.010 18.3± 2.1
Ours 0.378± 0.017 17.9± 1.9

To demonstrate that our method effectively obtains
disentangled representation while maintaining high
generation quality, we verify our approach on an im-
age dataset. Specifically, we follow the protocol es-
tablished by Yang et al. (2023) using the CelebA
dataset (Liu et al., 2015). In this setup, we calculate
Total AUROC Difference (TAD, Yeats et al., 2022)
and FID (Heusel et al., 2017) scores. TAD is a disen-
tanglement metric for datasets with binary attribute
labels that measures how well latent variables uniquely capture ground truth attributes. As shown
in Table 1, our method achieves the best performance in both aspects compared to the baselines,
including state-of-the-art methods that aim to address the significant trade-off between these two
factors, such as InfoDiffusion (Wang et al., 2023b) and DisDiff (Yang et al., 2023).

6.1.2 Common Benchmark with Toy Datasets

To compare our model with baselines dedicated to disentanglement (at the expense of generation qual-
ity) such as FactorVAE (H. Kim et al., 2018), β-TCVAE (Chen et al., 2018), and InfoGAN-CR (Lin
et al., 2020), we adopt the evaluation protocols of Locatello et al. (2019) and Khrulkov et al. (2021)
using toy datasets: Cars3D (Reed et al., 2015), Shapes3D (H. Kim et al., 2018), and MPI3D (Gondal
et al., 2019). For assessment, we use the Mutual Information Gap (MIG) (Chen et al., 2018) and the
Disentanglement metric (Eastwood et al., 2018). The MIG measures how well latent dimensions
respond to changes in individual generative factors, while DCI (Disentanglement, Completeness,
and Informativeness) evaluates the extent to which factors are distinctly represented by individual
latent dimensions, the exclusivity of each factor to a specific dimension, and the comprehensiveness
of the overall representation. Table 2 shows that our model achieves disentanglement performance
comparable to or surpassing that of other disentanglement models.

We also compare our approach with DisCo (Ren et al., 2022), another approach that uses contrastive
learning to find the appropriate directions in the latent space of a pre-trained generative model while
preserving its generative capabilities. We demonstrate the finding-based approach is complementary
to our method in Appendix D.1 (see Table 7).
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Table 2: Disentanglement Metrics. We evaluate our multi-β VAE representations through bench-
marking on well-known toy datasets and comparing them to baselines that aim to learn disentangled
representation. In each column, the best results are highlighted in bold, and the second-best results
are underlined.

Cars3D Shapes3D MPI3D

Method MIG↑ DCI↑ MIG DCI MIG DCI

FactorVAE 0.128 ± 0.036 0.160 ± 0.020 0.411 ± 0.163 0.611 ± 0.127 0.098 ± 0.027 0.246 ± 0.066
β-TCVAE 0.080 ± 0.024 0.140 ± 0.020 0.406 ± 0.190 0.613 ± 0.151 0.108 ± 0.053 0.239 ± 0.062
InfoGAN-CR 0.011 ± 0.009 0.020 ± 0.011 0.297 ± 0.124 0.478 ± 0.055 0.161 ± 0.077 0.242 ± 0.076
Ours 0.117 ± 0.009 0.157 ± 0.010 0.422 ± 0.090 0.621 ± 0.090 0.147 ± 0.035 0.253 ± 0.043

Table 3: Generation Quality. We evaluate our model for unconditional image synthesis and report
standard metrics, comparing them against baselines specifically designed for generation.

CelebA-HQ 256 × 256 FFHQ 256 × 256 LSUN-Bedrooms 256 × 256
Method FID ↓Prec. ↑Recall ↑Method FID ↓Prec. ↑Recall ↑Method FID ↓Prec. ↑Recall ↑
DC-VAE(Parmar et al., 2021) 15.8 - - ImageBART(Esser et al., 2021a) 9.57 - - ImageBART(Esser et al., 2021a) 5.51 - -
VQGAN+T(Esser et al., 2021b) 10.2 - - U-Net GAN(Schonfeld et al., 2020) 10.9 - - DDPM(Ho et al., 2020) 4.9 - -
PGGAN(Karras et al., 2018) 8.0 - - UDM(D. Kim et al., 2021) 5.54 - - UDM(D. Kim et al., 2021) 4.57 - -
LSGM(Vahdat et al., 2021) 7.22 - - StyleGAN(Karras et al., 2019) 4.16 0.71 0.46 StyleGAN(Karras et al., 2019) 2.35 0.59 0.48
UDM(D. Kim et al., 2021) 7.16 - - ProjectedGAN(Sauer et al., 2021) 3.08 0.65 0.46 ADM(Dhariwal et al., 2021) 1.90 0.66 0.51

Ours 6.41 0.71 0.48 Ours 5.45 0.72 0.48 Ours 3.2 0.65 0.48

6.2 Evaluating Generation Quality

We demonstrate that our model can serve as a standalone generation model by evaluating its generation
quality on practical image datasets, including CelebA-HQ (Karras et al., 2018), FFHQ (Karras et al.,
2019), and LSUN-Bedrooms (Yu et al., 2015), at a resolution of 256× 256. For these image datasets,
we evaluate our model using FID to assess image quality and precision-recall (Kynkäänniemi et al.,
2019) to gauge data distribution coverage. Details of our architecture and training times are provided
in Appendix C, and generated sample images are shown in Appendix D.4.

While our model is designed to learn disentangled latent representations, it is crucial that this
capability does not compromise generation quality. Based on our comparative performance with
generation-focused baselines in Table 3, we conclude that our model effectively generates high-quality
images at this resolution across various datasets.

Lastly, we visualize generated samples from various β values in Fig. 2 to demonstrate the smoothness
of our latent space spectrum in terms of β or t. We encode ground truth images to latent representations
at certain β values, denoise them using our non-linear diffusion, and decode them to obtain clear
images. We observe that generated images with different values of β remain consistent with each
other. Another smoothness perspective, spatial smoothness of the latent spaces, is visualized in
Appendix D.5.

7 Conclusion

We propose a new generative modeling framework that leverages a range of β values to learn
disentangled representations and sharp generation quality, including unconditional generation. Our
framework introduces two key components: (1) a multi-β VAE, producing a spectrum of latent
representations that can be refined via a denoising diffusion process, and (2) a non-linear diffusion
model that links latent representations for different β values. Our method offers a superior trade-off
compared to existing approaches. Additionally, it achieves comparable disentanglement performance
to dedicated baselines while maintaining high decoding quality and generating results on par with
state-of-the-art generation models.

References
Bae, Juhan, Michael R. Zhang, Michael Ruan, Eric Wang, So Hasegawa, Jimmy Ba, and Roger

Baker Grosse (2023). “Multi-Rate VAE: Train Once, Get the Full Rate-Distortion Curve”. In: The
Eleventh International Conference on Learning Representations.

9



=50/1000 =250/1000 =450/1000 =650/1000 =750/1000 =850/1000 =900/1000 =950/1000=0/1000
(reconstruc�on)

Ground truth

Figure 2: Smoothness of latent space in β (t): We provide evidence for the smoothness of the
learned representations by generating samples from latent spaces with various values of β. Notably,
latent representations obtained by smaller β values tend to produce images closer to ground truth
because they retain more information.

Burgess, Christopher P., Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins,
and Alexander Lerchner (2017). “Understanding disentangling in β-VAE”. In: Neural Information
Processing Systems.

Chen, Ricky T. Q., Xuechen Li, Roger Grosse, and David Duvenaud (2018). “Isolating Sources of
Disentanglement in Variational Autoencoders”. In: Advances in Neural Information Processing
Systems.

Collins, Jack H., Yifeng Huang, Simon Knapen, Benjamin Nachman, and Daniel Whiteson (Oct.
2022). “Machine-Learning Compression for Particle Physics Discoveries”. In.

Dai, Bin and David Wipf (2019). “Diagnosing and enhancing VAE models”. In: Proc. International
Conference on Learning Representation (ICLR).

Dewangan, Gaurav and Seetaram Maurya (2022). “Fault Diagnosis of Machines Using Deep Con-
volutional Beta-Variational Autoencoder”. In: IEEE Transactions on Artificial Intelligence 3.2,
pp. 287–296.

Dhariwal, Prafulla and Alexander Quinn Nichol (2021). “Diffusion Models Beat GANs on Image
Synthesis”. In: Advances in Neural Information Processing Systems. Ed. by A. Beygelzimer, Y.
Dauphin, P. Liang, and J. Wortman Vaughan.

Eastwood, Cian and Christopher K. I. Williams (2018). “A framework for the quantitative evaluation
of disentangled representations”. In: International Conference on Learning Representations.

Esser, Patrick, Robin Rombach, Andreas Blattmann, and Björn Ommer (2021a). “ImageBART: Bidi-
rectional Context with Multinomial Diffusion for Autoregressive Image Synthesis”. In: Advances
in Neural Information Processing Systems. Ed. by A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan.

Esser, Patrick, Robin Rombach, and Bjorn Ommer (June 2021b). “Taming Transformers for High-
Resolution Image Synthesis”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 12873–12883.

Fazlyab, Mahyar, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas (2019).
“Efficient and accurate estimation of lipschitz constants for deep neural networks”. In: Proc.
Advances in Neural Information Processing Systems (NeurIPS).

Gondal, Muhammad Waleed, Manuel Wüthrich, Ðorðe Miladinovic, Francesco Locatello, Martin
Breidt, Valentin Volchkov, Joel Bessekon Akpo, Olivier Bachem, Bernhard Scholkopf, and Stefan
Bauer (2019). “On the Transfer of Inductive Bias from Simulation to the Real World: a New
Disentanglement Dataset”. In: Neural Information Processing Systems.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep Residual Learning for
Image Recognition”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778.

Heusel, Martin, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter
(2017). “GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium”.
In: Advances in Neural Information Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S.
Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc.

Higgins, Irina, Loïc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M. Botvinick,
Shakir Mohamed, and Alexander Lerchner (2016). “beta-VAE: Learning Basic Visual Concepts

10



with a Constrained Variational Framework”. In: International Conference on Learning Representa-
tions.

Ho, Jonathan, Ajay Jain, and Pieter Abbeel (2020). “Denoising diffusion probabilistic models”. In:
Proceedings of the 34th International Conference on Neural Information Processing Systems. NIPS
’20. Vancouver, BC, Canada: Curran Associates Inc.

Hoffman, Matthew D and Matthew J Johnson (2016). “Elbo surgery: yet another way to carve up the
variational evidence lower bound”. In: Workshop in Advances in Approximate Bayesian Inference,
NIPS. Vol. 1. 2.

Hoogeboom, Emiel, Jonathan Heek, and Tim Salimans (23–29 Jul 2023). “simple diffusion: End-to-
end diffusion for high resolution images”. In: Proceedings of the 40th International Conference on
Machine Learning. Ed. by Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett. Vol. 202. Proceedings of Machine Learning Research. PMLR,
pp. 13213–13232.

Hoogeboom, Emiel, Thomas Mensink, Jonathan Heek, Kay Lamerigts, Ruiqi Gao, and Tim Salimans
(2024). Simpler Diffusion (SiD2): 1.5 FID on ImageNet512 with pixel-space diffusion.

Karras, Tero, Timo Aila, Samuli Laine, and Jaakko Lehtinen (2018). “Progressive Growing of
GANs for Improved Quality, Stability, and Variation”. In: International Conference on Learning
Representations.

Karras, Tero, Miika Aittala, Timo Aila, and Samuli Laine (2022). “Elucidating the Design Space of
Diffusion-Based Generative Models”. In: Proc. NeurIPS.

Karras, Tero, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine (2024).
“Analyzing and Improving the Training Dynamics of Diffusion Models”. In: Proc. CVPR.

Karras, Tero, Samuli Laine, and Timo Aila (2019). “A Style-Based Generator Architecture for
Generative Adversarial Networks”. In: 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4396–4405.

Khrulkov, Valentin, Leyla Mirvakhabova, I. Oseledets, and Artem Babenko (2021). “Disentangled
Representations from Non-Disentangled Models”. In: ArXiv abs/2102.06204.

Kim, Dongjun, Seung-Jae Shin, Kyungwoo Song, Wanmo Kang, and Il-Chul Moon (2021). “Soft
Truncation: A Universal Training Technique of Score-based Diffusion Model for High Precision
Score Estimation”. In: International Conference on Machine Learning.

Kim, Hyunjik and Andriy Mnih (2018). “Disentangling by Factorising”. In: International Conference
on Machine Learning.

Kingma, Diederik P. and Max Welling (2013). “Auto-Encoding Variational Bayes”. In: CoRR
abs/1312.6114.

Kynkäänniemi, Tuomas, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila (2019). “Im-
proved Precision and Recall Metric for Assessing Generative Models”. In: Neural Information
Processing Systems.

Lin, Zinan, Kiran Thekumparampil, Giulia Fanti, and Sewoong Oh (13–18 Jul 2020). “InfoGAN-CR
and ModelCentrality: Self-supervised Model Training and Selection for Disentangling GANs”. In:
Proceedings of the 37th International Conference on Machine Learning. Ed. by Hal Daumé III and
Aarti Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR, pp. 6127–6139.

Liu, Ziwei, Ping Luo, Xiaogang Wang, and Xiaoou Tang (2015). “Deep learning face attributes in the
wild”. In: Proceedings of the IEEE international conference on computer vision, pp. 3730–3738.

Locatello, Francesco, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf,
and Olivier Bachem (Sept. 2019). “Challenging Common Assumptions in the Unsupervised
Learning of Disentangled Representations”. In: Proceedings of the 36th International Conference
on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings
of Machine Learning Research. PMLR, pp. 4114–4124.

Makhzani, Alireza, Jonathon Shlens, Navdeep Jaitly, and Ian J. Goodfellow (2015). “Adversarial
Autoencoders”. In: ArXiv abs/1511.05644.

Mathieu, Emile, Tom Rainforth, N. Siddharth, and Yee Whye Teh (2018). “Disentangling Disentan-
glement in Variational Autoencoders”. In: International Conference on Machine Learning.

Parmar, Gaurav, Dacheng Li, Kwonjoon Lee, and Zhuowen Tu (June 2021). “Dual Contradistinctive
Generative Autoencoder”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 823–832.

Preechakul, Konpat, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn (2022).
“Diffusion autoencoders: Toward a meaningful and decodable representation”. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 10619–10629.

11



Radford, Alec, Luke Metz, and Soumith Chintala (2015). “Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks”. In: CoRR abs/1511.06434.

Reed, Scott E, Yi Zhang, Yuting Zhang, and Honglak Lee (2015). “Deep Visual Analogy-Making”.
In: Advances in Neural Information Processing Systems. Ed. by C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates, Inc.

Ren, Xuanchi, Tao Yang, Yuwang Wang, and Wenjun Zeng (2022). “Learning Disentangled Repre-
sentation by Exploiting Pretrained Generative Models: A Contrastive Learning View”. In: ICLR.

Richards, Ryan J and Austen M Groener (2022). “Conditional β-VAE for de novo molecular genera-
tion”. In: arXiv preprint arXiv:2205.01592.

Rombach, Robin, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer (2021). “High-
Resolution Image Synthesis with Latent Diffusion Models”. In: 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 10674–10685.

Sauer, Axel, Kashyap Chitta, Jens Müller, and Andreas Geiger (2021). “Projected GANs Converge
Faster”. In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan. Vol. 34. Curran Associates, Inc., pp. 17480–
17492.

Schonfeld, Edgar, Bernt Schiele, and Anna Khoreva (June 2020). “A U-Net Based Discriminator for
Generative Adversarial Networks”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

Shao, Huajie, Shuochao Yao, Dachun Sun, Aston Zhang, Shengzhong Liu, Dongxin Liu, Jun Wang,
and Tarek Abdelzaher (13–18 Jul 2020). “ControlVAE: Controllable Variational Autoencoder”. In:
Proceedings of the 37th International Conference on Machine Learning. Ed. by Hal Daumé III and
Aarti Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR, pp. 8655–8664.

Takida, Yuhta, Wei-Hsiang Liao, Chieh-Hsin Lai, Toshimitsu Uesaka, Shusuke Takahashi, and Yuki
Mitsufuji (2022). “Preventing oversmoothing in VAE via generalized variance parameterization”.
In: Neurocomputing 509, pp. 137–156.

Vahdat, Arash, Karsten Kreis, and Jan Kautz (2021). “Score-based Generative Modeling in Latent
Space”. In: Advances in Neural Information Processing Systems. Ed. by A. Beygelzimer, Y.
Dauphin, P. Liang, and J. Wortman Vaughan.

Wang, Yingheng, Yair Schiff, Aaron Gokaslan, Weishen Pan, Fei Wang, Christopher De Sa, and
Volodymyr Kuleshov (2023a). “InfoDiffusion: representation learning using information maximiz-
ing diffusion models”. In: Proceedings of the 40th International Conference on Machine Learning.
ICML’23. Honolulu, Hawaii, USA: JMLR.org.

– (2023b). “InfoDiffusion: representation learning using information maximizing diffusion models”.
In: Proceedings of the 40th International Conference on Machine Learning. ICML’23. Honolulu,
Hawaii, USA: JMLR.org.

Wu, Qiucheng, Yujian Liu, Handong Zhao, Ajinkya Kale, Trung Bui, Tong Yu, Zhe Lin, Yang Zhang,
and Shiyu Chang (2023). “Uncovering the disentanglement capability in text-to-image diffusion
models”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 1900–1910.

Yang, Tao, Yuwang Wang, Yan Lu, and Nanning Zheng (2023). “DisDiff: Unsupervised Disentangle-
ment of Diffusion Probabilistic Models”. In: Thirty-seventh Conference on Neural Information
Processing Systems.

Yeats, Eric, Frank Liu, David Womble, and Hai Li (2022). “NashAE: Disentangling representations
through adversarial covariance minimization”. In: European Conference on Computer Vision.
Springer, pp. 36–51.

Yu, Fisher, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao (2015). “LSUN: Construction
of a Large-scale Image Dataset using Deep Learning with Humans in the Loop”. In: CoRR
abs/1506.03365.

12


	Introduction
	Overview of -VAE
	Multi- Representation Learning
	Conditional Multi-level -VAE
	Controlling Information Loss with 

	Reversing the Information Loss
	Primer on Diffusion Models
	Non-linear Diffusion in Latent Space

	Related Works
	Experiments
	Evaluating Disentanglement
	Image Dataset
	Common Benchmark with Toy Datasets

	Evaluating Generation Quality

	Conclusion

