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Abstract

Disentangled and interpretable latent representations in
generative models are often achieved at the expense of gen-
eration quality. The β-VAE framework introduces a hyper-
parameter β to balance disentanglement and reconstruction
quality, where setting β > 1 introduces an information bot-
tleneck that favors disentanglement over sharp, accurate
reconstructions. To address this trade-off, we propose a
novel generative framework that leverages a range of β
values to learn multiple latent representations. First, we
train these representations within a single variational au-
toencoder (VAE), with a new loss function that controls
the information retained in each latent representation. We
then, introduce a non-linear diffusion model that links latent
spaces corresponding to different β values. This model de-
noises latent variables toward less disentangled representa-
tions, ultimately leading to (almost) lossless representations,
enabling sharp reconstructions. Furthermore, our model
supports sample generation without input images, function-
ing as a standalone generative model. We evaluate our
framework on both disentanglement and generation quality,
showing competitive performance against β-VAE baselines
and achieving high-quality image generation comparable
to state-of-the-art models. Additionally, we observe smooth
transitions in the latent spaces with respect to β changes,
facilitating consistent manipulation of generated outputs.

1. Introduction
Today, numerous advanced latent generative models are capa-
ble of producing hyperrealistic images, providing end users
with a broad array of options. Current advancements in state-
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of-the-art generative models focus primarily on qualitative
improvements in generated outputs, with recent research
emphasizing the study and analysis of training dynamics to
enhance generation quality [21, 22, 25, 26]. Consequently,
progress in generative modeling has largely shifted focus
from learning and evaluating a model’s latent representations
to refining the generation process itself. However, research
on deep latent generative models [30, 38] and unsupervised
representation learning has shown that purposefully learned
representations not only enhance generative performance but
also offer practical advantages [54].

Previous generative modeling approaches aimed at learn-
ing disentangled and interpretable latent representations have
often trailed behind in generation quality. β-VAE is a funda-
mental method for learning such representations, based on
the variational autoencoder (VAE) framework [30]. Higgins
et al. [18] modified the VAE objective by introducing a hy-
perparameter β, where setting β = 1 recovers the original
objective function. This β parameter governs the degree
of disentanglement, balancing it against reconstruction and
generation quality. A larger β value imposes stronger regu-
larization on the latent space, empirically shown to promote
disentanglement, while a smaller β prioritizes reconstruction
accuracy but does not encourage disentanglement. Although
β-VAE has been extensively studied [4, 8, 29, 46], overcom-
ing this challenging trade-off remains difficult. To the best
of our knowledge, no existing work has achieved satisfactory
generation quality on widely-used, practical image datasets.

Inspired by research following β-VAEs, we aim to pro-
mote disentangled representation learning within modern
generative models. To this end, we propose a novel gen-
erative modeling framework. Our model consists of two
main components. First, we train a single VAE that learns
a spectrum of disentangled representations by varying the
parameter of β, which controls the degree of disentangle-
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ment. This VAE comprises an encoder and a decoder, each
conditioned by β. However, this VAE still faces the trade-off
issue: latent representations disentangled by larger β values
lose some information from the original input, resulting in
blurred outputs similar to those of a standard β-VAE. To ad-
dress this, we introduce a novel non-linear diffusion model
that denoises the latent variable at a given β back to an (ide-
ally) non-lossy latent space corresponding to β = 0. This
allows us to generate sharp, non-blurred images by decoding
the denoised latent variable through the β = 0 decoder. No-
tably, our model can also generate new samples by starting
from the largest value of β without any input image, thanks
to the carefully designed configuration of the VAE.

In our experiments, we evaluate our model in terms of
both disentanglement and generation quality. For disentan-
glement, we benchmark on well-known toy datasets [27, 33].
Furthermore, we test our model’s capability as a standalone
generative model on widely-used image datasets both quali-
tatively and quantitatively. Additionally, we show that the
set of learned latent spaces is smooth both with respect to β
and within each individual space. In particular, smoothness
with respect to β is essential for consistent manipulation.

Our contributions are briefly listed as follows.
• We propose a generative modeling framework that lever-

ages multiple levels of latent representations ranging from
fully-informed to disentangled representations. To obtain
these latent representations, we extend β-VAE using a
range of β, along with a novel model design and objective.

• We propose a novel non-linear diffusion model that con-
nects latent spaces induced by different β values. By inte-
grating the VAE with the diffusion, our model enables both
disentanglement and high-quality generation in principle.

• We empirically show that our proposed model achieves dis-
entanglement performance competitive with β-VAE-based
baselines, while also generating high-quality images com-
parable to those produced by state-of-the-art generative
models.

2. Overview of β-VAE
This section provides an overview of the β-VAE while estab-
lishing the notations used throughout the rest of the paper.

We begin with the formulation of a vanilla VAE [30].
Suppose we have a training dataset D = {xi}Mi=1, where
xi ∈ RD for i = {1, . . . ,M}, drawn from an unknown
underlying distribution. We denote the empirical distribution
defined by D as pD(x). A VAE aims to uncover a reduced
set of latent factors that give rise to this dataset.

Specifically, a latent variable z ∈ Rd (d < D) is intro-
duced, with its prior distribution set as p(z) = N (0, Id).
Data samples are generated by first sampling z ∼ p(z) and
then decoding it using a probabilistic decoder, denoted as
pθ(x|z). The decoder is commonly parameterized by a con-
ditional isotropic Gaussian as pθ(x|z) = N (x|gθ(z), s2ID)

with a function gθ : Rd → RD. We then wish to maxi-
mize the marginal log-likelihood log pθ(x), where pθ(x) =
Ep(z)[pθ(x|z)]. However, this maximization is generally
not tractable. Therefore, in the VAE framework, a surrogate
objective function called the evidence lower bound (ELBO)
is maximized instead, formulated as log pθ(x) ≥

Eqϕ(z|x)
[
log pθ(x|z)

]︸ ︷︷ ︸
reconstruction term

−DKL(qϕ(z|x)||p(z))︸ ︷︷ ︸
regularization term

, (1)

where qϕ(z|x) is a variational distribution used to ap-
proximate the posterior distribution pθ(z|x), a.k.a., the
encoder. A common way to model the variational dis-
tribution is using a conditional Gaussian as qϕ(z|x) =
N (z|fϕ(x),diag(σϕ(x))), with functions fϕ : RD → Rd
and σϕ : RD → Rd≥0.

Through the maximization of Eq. (1), the encoder learns
to recover latent generative factors from the dataset, while
the decoder attempts to reconstruct x from z as accurately as
possible. In other words, the encoder and decoder are trained
to compress the data without information loss, effectively
becoming stochastic inverses of each other. The β-VAE
[18] is a variant of the above model that employs a slightly
different objective function:

Eqϕ(z|x)
[
log pθ(x|z)

]
− βDKL(qϕ(z|x)||p(z)). (2)

In this objective function, the regularization term in Eq. (1)
is scaled by a hyperparameter β.

The choice of β creates a trade-off between the reconstruc-
tion quality and disentanglement of the latent representation.
Some previous works have suggested that increasing the
contribution of the regularization term, i.e., setting β > 1,
not only promotes independence among latent dimensions
but also facilitates the learning of interpretable generative
factors (please refer to Appendix A for this literature review).
On the other hand, a downside to increasing regularization is
the loss of information. When the variational approximation
approaches the prior according to the KL term, all encodings
qϕ(z|x) begin to collapse to the prior, resulting in a lack
of distinct information about individual data points, which
hampers accurate reconstruction. This indicates that setting
the value of β is non-trivial due to the precarious balance
between desirable disentanglement and undesirable loss of
information. Even with a suitable parameter β for disen-
tangled representation, reconstructed samples may still be
blurred due to the loss of information.

Alternatives to the β-VAE, such as Chen et al. [4], Kim
and Mnih [29], address the issue of poor reconstructions but
do not evaluate sample quality and reconstructions on practi-
cal image datasets. In the following section, we introduce our
novel conditional β-VAE architecture, which incorporates
the strengths of these previously proposed enhancements.

In the following sections, we propose our solutions to two
critical issues:
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Figure 1. We visualize reconstructions from a trained conditional multi-level β-VAE on FFHQ [24] and LSUN Bedrooms [56], using β
values between [0, 1] over 1,000 steps. Without the non-linear diffusion model proposed in Sec. 4, our multi-level β-VAE produces blurry
reconstructions at higher β values, where greater disentanglement is observed.

1. Problem 1: Choosing the optimal regularization coeffi-
cient (β) is nontrivial and requires multiple training runs.
Our solution to this issue is detailed in Sec. 3.

2. Problem 2: Regularization leveraged for learning disen-
tangled representations deteriorates reconstruction and
sample quality, we propose inclusion of a novel diffusion
model in the latent space in Sec. 4 to resolve this.

3. Multi-β Representation Learning
To overcome the severe trade-off between reconstruction
accuracy and the disentanglement of latent representation in
existing VAE variants, we propose multi-β latent represen-
tation learning. First, we extend β-VAE by treating β as a
variable rather than a hyperparameter in Section 3.1. Using
a monotonic property of multi-β latent space presented in
Section 3.2, a subsequently learned diffusion model allows
us to move across latent spaces corresponding to different β
(see Section 4).

3.1. Conditional Multi-level β-VAE
Here we extend the β-VAE to incorporate β as a variable
within a range of values. In our setup, unlike the typical
β-VAE, β lies in [0, B] instead of being fixed, and it scales
the reconstruction and regularization terms with weights of
(B − β) and β, respectively (see Eq. (5)). This approach
allows us to achieve a full range of weighting with finite
values. We expect that larger values of β result in more
disentangled latent representations, while smaller values will
yield higher fidelity in the reconstructed samples. We assume
that each value of β has its latent space, which is denoted as
Zβ . In our VAE, the decoder and encoder for a given β are

designed as follows:

pθ(x|zβ ;β) = N (x|gθ(zβ , β), s2βI) (3)

qϕ(zβ |x;β) = N (zβ |fϕ(x, β), σ2
βI), (4)

where s2β , σ
2
β ∈ Rd≥0, θ and ϕ represent the parameters for

the decoder and encoder, respectively. We model both the
encoder and decoder to depend on β, which induces differ-
ent latent spaces. Additionally, the conditional covariance
matrices in both the data and latent spaces are modeled as
learnable isotropic matrices that depend solely on β.

Under this model setup, we propose a novel objective
function based on a rescaled ELBO as L = EβLβ , where

Lβ = EpD(x)

[
(B − β)Eqϕ(zβ |x)

[
log pθ(x|zβ)

]
− βDKL(qϕ(zβ |x)||p(z))

]
. (5)

Here, we sample β from a prior distribution to train the VAE
across multiple β values. For this work, we set it as a uniform
distribution, with B = 1. Notably, Lβ with β = 0 and 0.5
corresponds to the objective functions for plain autoencoder
and a VAE, respectively, without considering the scaling
factors*. Algorithm 1 contains the training algorithm for this
upgraded β-VAE.

3.2. Controlling Information Loss with β

As described in the previous section, our objective func-
tion (5) smoothly interpolates and extrapolates between those

*Our β is different from that of the typical β-VAE in the relationship
between β values and their respective models.
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Algorithm 1: Training of multi-level β-VAE

Input: Dataset D, β-schedule {βi}Ni=1, learning rate
η, number of training steps S

Output: Trained networks, ϕ, θ, and
σ = {σβ}β∈{βi}N

i=1

for s = 1, 2, . . . , S do
1. Sample:

x ∼ pD(x), β ∼ U([0, 1]), ϵ ∼ N (0, Id)

2. Generate noisy encoding:
zβ = fϕ(x, β) + σβϵ

3. Compute the objective L based on Eq. (5)

for ω = {θ, ϕ,σ} do
4. ω ← ω − η∇ωL

return fϕ, gθ, σ

for autoencoder and VAE. Specifically, β controls the infor-
mation loss in the latent spaces. We expect that β larger
than 0.5 promotes disentanglement in the latent space Zβ ,
albeit at the cost of information essential for reconstruction.
Conversely, β less than 0.5 results in higher fidelity of recon-
struction, sacrificing disentanglement of representations.

A smaller value of β places larger weight on the recon-
struction term, leading to a reduced latent variance σ2

β . In the
extreme case, setting β = 0 theoretically results in perfect re-
construction with σ2

0 = 0, as demonstrated in the following
proposition.

Proposition 1. Under certain regularity conditions, the
global optimum of L0 is achieved when σ2

0 = 0.

Proof. Please refer to Appendix B

In contrast, increasing β towards 1 enhances the degree of
latent regularization, which encourages disentanglement of
the latent representation. In the extreme case, when β = 1,
the objective function (5) reduces to the KL regularization
term, causing qϕ(z|x;β = 1) collapse to the prior distribu-
tion p(z). Consequently, the latent space, i.e., Z1, no longer
retains any information about the input x, as demonstrated
in the following proposition.

Proposition 2. The mutual information between the input
and the reconstructed samples produced by the VAE becomes
zero as DKL(qϕ(z|x;β = 1) ∥ p(z)) converges to zero. It
holds for any decoder function gθ(·, β = 1).

Proof. Please refer to Appendix B

This phenomenon causes a gradual loss of information
in the latent space, characterised by a gradual increase in
the variance of latent representations such that σβ < σβ′

for 0 ≤ β < β′ ≤ 1, which is also observed in previous
studies [49].

In summary, our multi-level β-VAE is equipped to learn
a slew of latent representations which due to Eq. (5), capture
major axes of variation present across the dataset by down-
weighting accurate reconstructions. This does not mitigate
Problem 2 (see Fig. 1). To this end, we purposely combine
the model Eq. (4) and Eq. (5) so that learnt σβ parallel a
typical noising process in diffusion models (β ≡ t). When
trained well, diffusion models can capture the target dis-
tribution and sample realisitic data by repeated denoising.
However, due to the involvement of an encoder that speci-
fies the mean fϕ(x, β) at all β ∈ [0, 1], our noising process
diverges from the commonly used linear inference/noising
process. We detail our formulation of non-linear denoising
diffusion in the next section.

4. Reversing the Information Loss

Increasing regularization enhances representation learning
but negatively affects sample and reconstruction quality.
This effect is shown in Fig. 1, where images are decoded
from latent spaces learned by our VAE on the FFHQ [24]
and LSUN Bedrooms [56] dataset. At higher β values, the
reconstructions tend to collapse into an “averaged” image,
a phenomenon also noted by Collins et al. [6]. To address
Problem 2, we propose reversing information loss by train-
ing a denoising model based on a diffusion process. First,
we review the standard diffusion model in Sec. 4.1 and its
nonlinear extension in Sec. 4.2, which can be viewed as a
specific instance of a Hierarchical VAE. In this approach,
the time-varying mean is governed by the encoder (fϕ), with
noise conditioning parameterized by β or equivalently by
time t.

4.1. Primer on Diffusion Models

We start with a brief primer on the vanilla diffusion models
with a linear diffusion process. Diffusion models consist of
a fixed hierarchical encoding process, known as the forward
or noising process, and a decoding process for generation.
In the encoding stage, incremental noise is gradually added
to the data, transforming it into a Gaussian noise:

q(zt|x; t) := N (zt|x, σ2
t Id), (6)

where t ∈ [0, T ], τ > 0 is a small constant, and σt > 0 is
a predefined noise schedule that increases with t. Next, the
Markovian forward distributions are derived as

q(zt|zt−τ ) = N (zt|zt−τ , σ2
t|t−τId), where (7)

σ2
t|t−τ := σ2

t − σ2
t−τ . (8)
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Figure 2. Architecture of our model. Our approach embeds βs
to control multiple levels of disentanglement as time conditioning
in our newly designed nonlinear diffusion model, enabling both
effective disentanglement and high-quality generation.

A tractable sequential reverse decoding process is obtained
via Bayes’ rule, leading to:

q(zt−τ |zt,x) = N (zt−τ |µ̃t(zt,x), σ̃2
t Id), where (9)

σ̃2
t =

σ2
t|t−τσ

2
t−τ

σ2
t

, µ̃t(zt,x) =
σ2
t−τ
σ2
t

zt +
σ2
t|t−τ

σ2
t

x.

(10)

Diffusion models are trained to match the generative reverse
conditional distributions in Eq. (9), and are generally param-
eterized as

pψ(zt−τ |zt) := N (zt−τ |µψ(zt, t), σ2
r(t)Id), (11)

where µψ(zt, t) :=
σ2
t−τ
σ2
t

zt +
σ2
t|t−τ

σ2
t

x̂ψ(zt, t). (12)

x̂ψ is known as the denoiser. Equivalently, we parametrize
it as a noise prediction model ϵ̂ψ , where x̂ψ(zt, t) =

(
zt −

σtϵ̂ψ(zt, t)
)
/αt. The loss function of a diffusion model is

derived using an ELBO (by extending Eq. (1) with time
hierarchy), aiming to match the conditional distributions
in Eq. (9) and Eq. (11) over all t ∈ [0, T ] using the KL
divergence. This loss boils down to a simple regression loss:

min
ψ

Et,xEzt|x

[
1

2σ̃2
t

∥µψ(zt, t)− µ̃t(zt,x)∥22
]
. (13)

By discretizing the time such that t ∈ {iT/N}Ni=0 for the
iterative decoding, we obtain a hierarchical generator:

pψ(x) =

∫
z

p(x|z0)p(zB)
N∏
i=1

pψ(z (i−1)T
N
|z iT

N
), (14)

where p(zT ) = N (zT |0, Id).

4.2. Non-linear Diffusion in Latent Space
We propose a non-linear (in x) denoising diffusion for use
in our model. In this subsection, time variables t (and T ) are
interchangeable with β (and B), as they represent the same
concept. We hinted in Sec. 3.2 that our non-linear diffusion

process is prescribed by the β- or time-dependent encoder.
Formally, the distribution of zt for given x is

qϕ(zt|x; t) = N (zt|fϕ(x, t), σ2
t Id). (15)

This expression is just an adaptation of Eq. (4) with β = t,
and is more general than Eq. (6). We propose the nonlinear
Markovian encoding process as

q(zt|zt−τ ,x) = N (zt|zt−τ+fϕ(x, t)− fϕ(x, t− τ), σ2
t|t−τ ).

(16)
This form closely resembles Eq. (7). Following the devel-
opment in Sec. 4.1, we now define the reverse of Eq. (16)
as:

q(zt−τ |zt,x) = N (zt|µ̃t(zt,x), σ̃2
t Id), where (17)

µ̃t(zt,x) =
σ2
t−τ
σ2
t

zt +
σ2
t|t−τ

σ2
t

x+ fϕ(x, t− τ)− fϕ(x, t),

(18)

with σ̃2
t remaining the same as Eq. (10). Due to the additional

fϕ terms in this flavour of the diffusion model, µψ cannot
follow the same parameterization as in Eq. (12). Instead we
introduce a new approach to express the mean prediction in
this case, as follows:

µψ(zt, t) :=
σ2
t−τ
σ2
t

zt+
σ2
t|t−τ

σ2
t

x̂ψ(zt, t)+∆̂ψ(zt, t). (19)

Eq. (19) introduces an extra predictor ∆̂ψ for learning the
evolution of encodings with time. In practice, we train noise
prediction, reparameterizing x̂ψ(zt, t) with ϵ̂ψ(zt, t), along
with an encoding difference predictor ∆̂ψ(zt, t), which is
novel to the best of our knowledge.

Following the parameterization of µψ , our model training
differs from standard practice in a few key ways. First, we
do not train the noise prediction network to predict the noise
added to z0 given a sample zt. The transition from z0 to zt
is non-linear due to the encoder and depends on its Jacobian,
dfϕ(x,t)

dt . Rather than learning an inversion of this time-
varying encoding, we aim to learn the direction of the noise
(ϵt) at each time step t ∈ [0, T ] using ϵ̂ψ(zt, t), i.e.,

zt = fϕ(x, t) + σtϵt, ϵt ∼ N (0, Id) (20)

min
ψ

Et,xEϵtEzt|x,ϵt

[
1

w(t)
∥ϵψ(zt, t)− ϵt∥22

]
, (21)

where w(t) is a weighting function. This approach trains
the model to denoise at each time step.Additionally, ∆̂ψ is
necessary for sampling and is trained to predict the change in
fϕ over a small time interval τ *. Assuming that the encoder

*In implementation, we set τ = T/N in the discrete time setup, learning
the single time-step encoding difference for all times.
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Algorithm 2: Sampling (Noise Prediction model)
Input: Trained model ϵψ , total time steps N , largest

time T , noise schedule
σ = {σt}t∈{0,T/N,...,(N−1)T/N,T}

Output: Generated sample z0

Initialize: zT ∼ N (0, Id)
for t = T, (N − 1)T/N . . . , T/N do

1. Predict noise and diff:
ϵ̂ = ϵ̂ψ(zt, t), ∆̂ = ∆̂ψ(zt, t)

2. Compute mean for zt:
µt = zt − σtϵ̂

3. Predict previous mean:
µt−T/N = µt − ∆̂

4. Update zt−T/N :
ϵ ∼ N (0, I), zt−T/N = µt−T/N+σt−T/Nϵ

return z0

is a smooth function, this design is based on the intuition that
learning encoding differences over one time step is easier
than over arbitrarily large steps.

We adjust the diffusion model’s U-Net to produce two
outputs, ϵ̂(zt, t), ∆̂ψ(zt, t). Using these predictions, we
build our DDPM [19]-inspired sampling algorithm, as shown
in Algorithm 2. The actual loss function used to train this
new diffusion model is defined as

min
ψ

Et,xEϵtEzt|x,ϵt

[ 1

w(t)
∥ϵψ(zt, t)− ϵt(x, ϵt)∥22

+ ∥fϕ(x, t− τ)− fϕ(x, t)− ∆̂ψ(zt, t)∥22
]
. (22)

Integrating the conditional multilevel β-VAE, as introduced
in Sec. 3.1, with the diffusion model described in Sec. 4.2 is
key to mitigating the disentanglement-reconstruction trade-
off in our framework.

We now combine the two proposed modules from Sec. 3
and Sec. 4 into a single model, trained in two phases. In the
first phase, we train the conditional multilevel β-VAE using
the loss defined in Eq. (5) (Algorithm 1). After this, we train
the non-linear diffusion model from Sec. 4.2, keeping the
autoencoder parameters fixed. Additionally, depending on
the dataset, we fine-tune the decoder with an adversarial loss,
following Rombach et al. [43], to enhance generation quality.
Further training details are provided in Appendix D.

5. Related Works
β-VAE and its variants are extensively studied for their
distinct capabilities [3] and wide-ranging applications in
domains such as images [18], text [46], and molecular
generation [42]. These models are especially valued for

their interpretable latent representations, achieved through
β-controlled regularization.

Kim and Mnih [29] enhanced disentanglement while pre-
serving reconstruction quality by combining the ELBO with
a total correlation term, balanced by a hyperparameter. Simi-
larly, Chen et al. [4] improved mutual information between
latent variables and observed data to support independence
among latent factors. Shao et al. [46] introduced an adaptive
feedback mechanism that adjusts β during training based on
KL divergence, using a non-linear PI controller. Dewangan
and Maurya [8] employed a deep convolutional β-VAE for
feature extraction in fault diagnosis of industrial machines,
with a variable β training protocol that regularizes the model
but does not condition the encoder and decoder on β.

Both Collins et al. [6] and Bae et al. [1] explored train-
ing VAEs with multiple β values. Bae et al. [1] aimed to
capture the full rate-distortion curve using a hypernetwork
conditioned on β, while Collins et al. [6] trained over mul-
tiple β values using conditional variational and generative
distributions similar to ours, focusing on particle physics
applications. Unlike these works, our framework supports
high-fidelity generation from disentangled representations
(with larger β) by linking latent spaces through a novel non-
linear diffusion process. Additionally, we introduced specific
adjustments to the β-conditioned VAE, tailoring the latent
space for diffusion.

Hierarchical VAEs are relevant to our model framework.
Sønderby et al. [48] introduced a graphical model with top-
down and bottom-up paths to build hierarchical latent struc-
tures in both generative and inference processes. This design
improves network efficiency by enabling feature sharing
between the generative process pθ(x, z) and the inference
process qϕ(x, z). Subsequent studies have leveraged this
graphical approach to enhance generation quality and log-
likelihood estimation [5, 50].

Razavi et al. [39] extended vector quantized-VAE (VQ-
VAE) by incorporating this graphical modeling [52]. Alter-
natively, Dhariwal et al. [10] trained separate VQ-VAEs to
learn distinct levels of discrete latent representations. To
integrate the multiple latent spaces, they introduced a prior
and upsamplers, modeled by separate unconditional and con-
ditional autoregressive transformers, respectively. Unlike
these approaches, our model uses a single VAE and prior
model to manage hierarchical levels, supporting continuous
(infinite) levels and providing efficient memory usage and
reduced training costs.

Non-linear diffusion models represent a special case of
hierarchical VAEs, offering learnable forward and denoising
processes for improved modeling flexibility. Singhal et al.
[47] and Bartosh et al. [2] focus on algorithmic strategies
for training non-linear diffusion models. The former ad-
dresses intractable score expressions in non-linear kernels
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by linearizing the non-linear drift, while Nielsen et al. [36]
improve generation quality by introducing a non-linear drift
term through a time-dependent encoder. Unlike Bartosh et al.
[2], their method employs fixed noise schedules and skips
input-space compression, avoiding decoders in the latent-to-
data mapping. Our model shares similarities with Nielsen
et al. [36] but with notable differences: our model outputs
two heads for noise and difference prediction (see Eq. (19)),
learns noise schedules independently of data, and encodes
to a lower-dimensional latent space.While Wang et al. [53]
try to solve this issue with linear diffusion processes with an
auxiliary variable that’s trained with addtional losses.

6. Experiments
In this section, we first quantitatively evaluate our proposed
approach with two types of assessments. In Sec. 6.1, we
examine the disentanglement of the learned latent repre-
sentations, using toy datasets for quantitative analysis. In
Sec. 6.2, we evaluate our model’s unconditional generation
performance and report standard metrics on commonly-used
image datasets. Additionally, we demonstrate the effective-
ness of representations learned by our method qualitatively
using common image datasets in Sec. 6.3.

6.1. Evaluating Disentanglement
We adopt the evaluation protocols of Locatello et al. [33]
and Khrulkov et al. [27] using toy datasets: Cars3d [40] with
3 ground truth factors, Shapes3D [29] with 6 ground truth
factors, and MPI3D [15] with 7 ground truth factors. For as-
sessment, we use the Mutual Information Gap (MIG)[4] and
the Disentanglement metric[11]. The MIG measures how
well latent dimensions respond to changes in individual gen-
erative factors, while DCI (Disentanglement, Completeness,
and Informativeness) evaluates the extent to which factors
are distinctly represented by individual latent dimensions,
the exclusivity of each factor to a specific dimension, and
the comprehensiveness of the overall representation.

We compare our approach with other methods that
address the disentanglement-generation trade-off: Factor-
VAE [29], β-TCVAE [4], and InfoGAN-CR [32]. Although
other unsupervised representation learning methods have
been proposed [55], they primarily focus on disentangled rep-
resentation learning without paying attention to generation
quality. We also compare with Ren et al. [41] that uses con-
trastive learning to find the right directions in the latent space
of a pre-trained generative model. Our results are shown in
Tab. 1. For all toy datasets, we train with 500 values of β
equally spaced within [0, 1]. We perform a sweep over all β
values in our model to identify the optimal latent representa-
tion for each metric. Specifically, for Cars3d [40] we achieve
the highest score at β = 285/500, for Shapes3D [29] at
β = 210/500, and for MPI3D [15] at β = 280/500. Our ex-
periments indicate that our model achieves disentanglement

Table 1. Disentanglement Metrics: We evaluate our multi-β
VAE representations by benchmarking on well-known toy datasets
and comparing them to baselines that address the disentanglement-
generation trade-off. In each row, the best results are highlighted in
bold, and the second-best results are marked with an asterisk (∗).

Metrics FactorVAE β-TCVAE InfoGAN-CR Ours

C
ar

s MIG(↑) 0.128 ± 0.036 0.080 ± 0.024 0.011 ± 0.009 0.114 ± 0.009∗

DCI(↑) 0.160 ± 0.020 0.140 ± 0.020 0.020 ± 0.011 0.157 ± 0.010∗

Sh
ap

es MIG(↑) 0.411 ± 0.163 0.406 ± 0.190 0.297 ± 0.124 0.422 ± 0.090
DCI(↑) 0.611 ± 0.127 0.613 ± 0.151 0.478 ± 0.055 0.621 ± 0.090

M
PI MIG(↑) 0.098 ± 0.027 0.108 ± 0.053 0.161 ± 0.077 0.147 ± 0.035∗

DCI(↑) 0.246 ± 0.066 0.239 ± 0.062 0.242 ± 0.076 0.253 ± 0.043

performance, comparable to or surpassing existing meth-
ods. Moreover, finding based approaches like Ren et al. [41]
are complementary to our multi-β VAE and offer marginal
performance gains when combined with our model.

To further investigate the properties of latent representa-
tions learned at different β values, we plot the evolution of
the MIG score as a function of β using the Cars3d dataset.
These results are presented in Fig. 3. The plot reveals that
MIG scores fluctuate in alignment with the loss function (5)
associated with each β value. For models like β-TCVAE,
β-VAE, and FactorVAE, determining an optimal coefficient
for regularization can be challenging, often requiring numer-
ous training runs as the ideal coefficient depends on both the
dataset and model architecture. In our approach, this issue is
mitigated by training a conditional β model across a wide
range of β values (Sec. 3.1). Building on this analysis, we
highlight an additional insight gained from using multiple β
values. By leveraging the distinct generative factors in the
toy datasets, we plotted the highest mutual information for
two factors across all β values, showing that while mutual
information (MI) increases for ‘Pitch’ as β increases, it de-
creases for ‘Identity’ (see Fig. 3). This observation supports
the idea of training a model across multiple β values, as it
enables targeted manipulation of image factors by selecting
specific β values. Interestingly, in Fig. 1, we observe that
sharper facial and hair features gradually fade until around
the 500th step, with features like ’glasses’ and ’gender’ di-
minishing between steps 600 and 700, while ’facial angle’
persists until approximately the 800th step. We provide more
observations related to our multi β-VAE in Appendix C.1..

6.2. Evaluating Generation Quality
In this subsection, we evaluate the generation quality of
our model on practical image datasets, including CelebA-
HQ [23], FFHQ [24], and LSUN-Bedrooms [56], at a reso-
lution of 256× 256. While our model is designed to learn
disentangled latent representations, it is crucial that this ca-
pability does not compromise generation quality. For the
experiments in this section, we train and sample from the
non-linear diffusion model unconditionally to assess perfor-
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Figure 3. Variation of MIG and MI: We analyze the variation in
MIG and MI scores of generative factors across different β values
on the Cars3D dataset [40] to quantitatively track disentanglement
in the latent space. Notably, the highest MIG scores for each factor
are achieved at different β values.

t = 700 t = 800 t = 900

Image 1 Image 2

Latent Interpolation

Figure 4. Smoothness of latent space: We provide evidence for the
smoothness of the learned representations by partially interpolating
between two images (leftmost and rightmost columns). In each row,
we vary the timestep at which interpolation occurs, and in each
column, we change the latent variables being interpolated.

mance. Both in this subsection and the next, we use the
same trained generative models for consistency. For all the
three image datasets, we train the diffusion model with one
thousand time steps or β values in the range [0, 1].

For these image datasets, we evaluate our model by using
FID [17] to assess image quality and precision-recall [31]
to gauge data distribution coverage. Based on our com-
parative performance with generation-focused baselines in
Tab. 2, we conclude that our model effectively generates
high-quality images at this resolution across various datasets.
Details of our architecture and training times are provided
in Appendix D, and generated sample images are shown in
Appendix C.2.

6.3. Exploring Learned Latents

First, we test the smoothness of the learned latent space by
interpolating between two images. In this experiment, we
use a trained model ϵψ and a pair of images. Latent represen-

Input Reconstruction Edit

Figure 5. Editing images: As demonstrated by the example above,
our model can also edit specific attributes of a given image. In the
top row, we change the hair style, and in the middle row, we modify
the hair colour and in the bottom row we remove glasses. The last
two edits are performed between the 200th and 300th time steps
while the first one is performed at 650th step.

tations are obtained for both images by encoding them with
a chosen t (or β) value, then partially interpolating these
representations by averaging 15% of the latent dimension-
ality for each row. Next, we denoise these representations
back to t = 0 using the learned diffusion model and decode
them to image space, as shown in Fig. 4. The random seed
is manually controlled throughout the process. This analysis
shows that our representation space maintains smoothness
along the time (or β) axis.

Furthermore, achieving specific facial attributes requires
adjustments along the time axis and selecting the appropriate
set of latent variables, as different facial attributes disentan-
gle at various time steps. In Fig. 5, we provide examples
showcasing our model’s capability to edit specific attributes
within an image. Attribute editing is performed by manipu-
lating the latent encodings of an image at certain time steps.
This example highlights an additional benefit of the disen-
tangled representations learned by our model. Empirically,
we observe that attributes such as glasses, hairstyle, and hair
color can be modified between the 200th–300th time steps,
whereas attributes like face angle and age require adjust-
ments between the 700th–800th time steps. Further results
in this category are provided in Appendix C.1.

7. Conclusion
We propose a new generative modeling framework that lever-
ages a range of β values to learn disentangled representations
and sharp generation quality, including unconditional gener-
ation. Our framework introduces two key components: (1) a
multi-β VAE, producing a spectrum of latent representations
that can be refined via a denoising diffusion process, and (2)

8



Table 2. Generation quality: We evaluate our model for unconditional image synthesis and report standard metrics, comparing them against
baselines specifically designed for generation.

CelebA-HQ 256 × 256 FFHQ 256 × 256 LSUN-Bedrooms 256 × 256

Method FID ↓ Prec. ↑ Recall ↑ Method FID ↓ Prec. ↑ Recall ↑ Method FID ↓ Prec. ↑ Recall ↑

DC-VAE[37] 15.8 - - ImageBART[12] 9.57 - - ImageBART[12] 5.51 - -
VQGAN+T[13] (k=400) 10.2 - - U-Net GAN[45] (+aug) 10.9 (7.6) - - DDPM[19] 4.9 - -

PGGAN[23] 8.0 - - UDM[28] 5.54 - - UDM[28] 4.57 - -
LSGM[51] 7.22 - - StyleGAN[24] 4.16 0.71 0.46 StyleGAN[24] 2.35 0.59 0.48
UDM[28] 7.16 - - ProjectedGAN[44] 3.08 0.65 0.46 ADM[9] 1.90 0.66 0.51

ours 6.81 0.71 0.48 ours 5.65 0.72 0.48 ours 3.2 0.65 0.48

a non-linear diffusion model that links latent representations
for different β values. Our method achieves comparable
disentanglement performance to dedicated baselines while
maintaining high decoding quality and achieving generation
quality on par with state-of-the-art models. To our knowl-
edge, this is the first model that accomplishes both effective
disentanglement and satisfactory generation quality.
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